Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomech Model Mechanobiol ; 21(5): 1613-1621, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35908095

RESUMO

Fecobionics is an integrated device that has shown promise for assessment of anorectal function. We used a wireless Fecobionics prototype to visualize defecatory patterns and to compute volume-pressure, contraction work, and flow. Twelve normal subjects were studied. The probe was 10 cm-long and contained pressure sensors and electrodes for impedance planimetry. Pressures, diameters, and volume data during defecation were analyzed. The bag was distended inside rectum to the urge-to-defecate level where after the subjects were asked to evacuate. The contraction work and defecatory flow were computed from the volume changes during expulsion. The minimum anal diameter during the evacuation was 17.6 ± 1.5 mm. The middle diameter recording was 10-20% lower than the front diameter channels and 10-20% bigger than the rear channels. The bag volume at urge correlated with the minimum diameter (r = 0.63). The diameter-pressure and volume-pressure loops were counterclockwise with phases of bag filling, isometric contraction, ejection and anal passage. The defecatory contraction work was 3520 ± 480 mL × cmH2O. The maximum flow during defecation was 302 ± 33 mL/s. The flow was associated with the anal diameter (r = 0.84) but not with the rectoanal pressure gradient (r = 0.14). Volume-pressure loops have a tremendous impact on the understanding of cardiopulmonary pathophysiology. Future studies will shed light on potential clinical impact in defecatory pathophysiology.


Assuntos
Canal Anal , Defecação , Humanos , Defecação/fisiologia , Manometria , Canal Anal/fisiologia , Reto/fisiologia , Contração Isométrica
2.
Physiol Rep ; 10(11): e15338, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35656707

RESUMO

Several technologies have been developed for assessing anorectal function including the act of defecation. We used a new prototype of the Fecobionics technology, a multi-sensor simulated feces, to visualize defecatory patterns and introduced new metrics for anorectal physiology assessment in normal subjects. Fourteen subjects with normal fecal incontinence and constipation questionnaire scores were studied. The 10-cm-long Fecobionics device provided measurements of axial pressures, orientation, bending, and shape. The Fecobionics bag was distended to the urge-to-defecate level inside rectum where after the subjects were asked to evacuate. Physiological evacuation parameters were assessed. Special attention was paid to the Fecobionics rectoanal pressure gradient (F-RAPG) during evacuation. Anorectal manometry (ARM) and balloon expulsion test (BET) were done as references. The user interface displayed the fine coordination between pressures, orientation, bending angle, and shape. The pressures showed that Fecobionics was expelled in 11.5 s (quartiles 7.5 and 18.8s), which was shorter than the subjectively reported expulsion time of the BET balloon. Six subjects did not expel the BET balloon within 2 min. The F-RAPG was 101 (79-131) cmH2 O, whereas the ARM-RAPG was -28 (-5 to -47) cmH2 0 (p < 0.001). There was no association between the two RAPGs (r2  = 0.19). Fecobionics showed paradoxical contractions in one subject (7%) compared to 12 subjects with ARM (86%). Fecobionics obtained novel physiological data. Defecatory patterns and data are reported and can be used to guide larger-scale studies in normal subjects and patients with defecatory disorders. In accordance with other studies, this Fecobionics study questions the value of the ARM-RAPG.


Assuntos
Canal Anal , Defecação , Canal Anal/fisiologia , Defecação/fisiologia , Estudos de Viabilidade , Humanos , Manometria/métodos , Reto/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...